Обозначим коэффициент отношения углов А и Б равным а.
Тогда угол А=7а, угол Б=8а, угол Д=∠Б-20°, т.е. угол Д=8а-20°, а величина угла С=150°
Сумма углов выпуклого четырехугольника 360°.
7а+8а+8а-20°+150°=360°
23а=230°
а=10°⇒
∠А=7•10°=70°
∠Б=8°18°=80°
∠Д=80°-20°=60°
При проверке сумма всех углов получается равной 360°,
а ∠А:∠Б=70°:80°=7:8