Решение
1) 4^(x - 1/2) - 17*2^(x - 2) + 2 ≤ 0
2*2^(2x) - 17*2^x + 8 = 0
2^x = t, t > 0
2t² - 17t + 8 ≤ 0
D = 289 - 4*2*8 = 289 - 64 = 225
t₁ = (17 - 15)/4 = 1/2
t₂ = (17 + 15)/4 = 8
1) 2^x = 1/2
2^x = 2⁻¹
x₁ = - 1
2) 2^x = 8
2^x = 2³
x₂ = 3
x ∈ [- 1; 3]