Тема: "Преобразование произведения в сумму".
Три основные формулы, которыми будем пользоваться:
cosx*cosy=1/2(cos(x+y)+cos(x-y))
sinx*siny=1/2(cos(x-y)-cos(x+y))
sinx*cosy=1/2(sin(x+y)+sin(x-y))
sin82*30`*cos52*30`=1/2(sin(82*30`+52*30`)+sin(82*30`-52*30`))=
=1/2(sin135*+sin30*)=1/2sin135*+1/2*1/2=
=1/2sin(90*+45*)+1/4=1/2cos45*+1/4=
sin82*30`*cos37*30`=1/2(sin(82*30`+37*30`)+sin(82*30`-37*30`)=
=1/2(sin120*+sin45*)=
cos37*30`*cos7*30`=1/2(cos(37*30`-7*30`)+cos(37*30`+7*30`)=
1/2(cos30*+cos45*)=
=\frac{\sqrt{3}+\sqrt{2}}{4}" alt="\frac{1}{2}(\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2})=
=\frac{\sqrt{3}+\sqrt{2}}{4}" align="absmiddle" class="latex-formula">
cos75*cos105*=1/2(cos(75*+105*)+cos(105*-75*))=1/2(cos180*+cos30*)=

cos45*cos75*=1/2(cos(75*-45*)+cos(75*-45*))=1/2(cos120*+cos30*)=
