1) Вычислим координаты вершин треугольника ABC.
Точка А пересечения прямых y = 3x - 1, y = 2x + 5
2x + 5 = 3x - 1
x = 6
y = 2*6 + 5 = 17
A(6;17)
Точка B пересечения прямых y = 3x - 1, y = 11x + 23
11x + 23 = 3x - 1
8x = - 24
x = - 3
y = 3*(-3) - 1 = - 10
B(- 3; - 10)
Точка C пересечения прямых y = 2x + 5, y = 11x + 23
11x + 23 = 2x + 5
9x = - 18
x = - 2
y = 2*(- 2) + 5 = - 4 + 5 = 1
C(- 2; 1)
2) Найдём длину стороны АВ треугольника:
AB = √((-3-6)² + (-10-17)²) = √(81 + 729) = √810 = 9√10
3) Вычислим
высоту треугольника. Если дано уравнение прямой
ax + by + c = 0 и координаты точки С(х₀;у₀),
то расстояние
от точки С до прямой находится по формуле: