1). Постройте график функции а). Найдите область определения функции; б). Какие значения...

0 голосов
171 просмотров

1). Постройте график функцииy=- \frac{2}{x}
а). Найдите область определения функции;
б). Какие значения принимает функция ?
в). Является ли функция четной или нечетной ?
г). Укажите промежутки возрастания
( убывания ) функции; промежутки, в которых функция принимает положительные ( отрицательные значения ).


Алгебра (19 баллов) | 171 просмотров
Дан 1 ответ
0 голосов

График нечетной функции Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям: 1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции. 2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x). График нечетной функции симметричен относительно точки О – начала координат. Например, функция y=x^3 является нечетной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О. Возьмем произвольное х=2. f(x)=2^3=8. f(-x)=(-2)^3=-8. Следовательно, f(x) = -f(x). Таким образом, у нас выполняются оба условия, значит функция нечетная.

                                       Чётная функция
Если построить график четной функции он будет симметричен относительно оси Оу. Например, функция y=x^2 является четной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О. Возьмем произвольное х=3. f(x)=3^2=9. f(-x)=(-3)^2=9. Следовательно, f(x) = f(-x). Таким образом, у нас выполняются оба условия, значит функция четная.
Рассмотри подробнее свойство четности. Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям: 1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции. 2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

(930 баллов)