Решите неравенствоа)б)

0 голосов
30 просмотров

Решите неравенство
а)image1" alt=" \frac{1}{x}>1" align="absmiddle" class="latex-formula">
б)\frac{x-1}{x} <1


Алгебра | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image1, \\x \neq 0, \\  \frac{1}{x}-1>0, \\ \frac{1-x}{x}>0, \\ \left [ {{ \left \{ {{1-x<0,} \atop {x<0;}} \right. } \atop { \left \{ {{1-x>0,} \atop {x>0;}} \right. }} \right.  \left [ {{ \left \{ {{x>1,} \atop {x<0;}} \right. } \atop { \left \{ {{x<1} \atop {x>0;}} \right. }} \right.  \left [ {{x\in\varnothing,} \atop {01, \\x \neq 0, \\  \frac{1}{x}-1>0, \\ \frac{1-x}{x}>0, \\ \left [ {{ \left \{ {{1-x<0,} \atop {x<0;}} \right. } \atop { \left \{ {{1-x>0,} \atop {x>0;}} \right. }} \right.  \left [ {{ \left \{ {{x>1,} \atop {x<0;}} \right. } \atop { \left \{ {{x<1} \atop {x>0;}} \right. }} \right.  \left [ {{x\in\varnothing,} \atop {0

image0, \\ x>0." alt=" \frac{x-1}{x} <1, \\ x \neq 0, \\ \frac{x-1}{x}-1<0, \\ -\frac{1}{x} <0, \\ \frac{1}{x} >0, \\ x>0." align="absmiddle" class="latex-formula">
(93.5k баллов)