Биссектриса угла A треугольника ABC пересекает сторону BC в точке K, а окружность...

0 голосов
66 просмотров

Биссектриса угла A треугольника ABC пересекает сторону BC в точке K, а окружность описанную около треугольника ABC в точке M.Найдите радиус окружности, описанной около треугольника KMC, Если AC=6; BC=5; AB=9


Геометрия (15 баллов) | 66 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Есть такой прямой метод - треугольники ABK и KMC подобны, поскольку ∠ABC = ∠AMC; (у этих треугольников еще одна пара углов - вертикальные, значит все углы равны); при этом длину биссектрисы AK легко найти: по свойству биссектрисы BK/CK = 9/6 = 3/2; откуда BK = 3, CK = 2; AK^2 = AB*AC - BK*CK = 5*6 - 3*2 = 48; AK = 4√3; отсюда можно найти все стороны CKM (KM = √3/2; CM = 3√3/2, CK = 2), найти площадь по формуле Герона и применить R = abc/4S;
Ничего этого я делать не буду :)) пригодится только CK = 2; и ∠ABC = ∠AMC; я обозначу этот угол α;
Вместо этого я найду площадь треугольника ABC.
Стороны 9, 5, 4, полупериметр p = (9 + 5 + 6)/2 = 10; p - 9 = 1; p - 5 = 5; p - 6 = 4;
S^2 = 10*1*5*4 = 200; S = 10√2; 
Отсюда 10√2 = 9*5*sin(α)/2; sin(α) = 4√2/9; 
Отсюда по теореме синусов искомый радиус равен R =  CK/(2*sin(α)) = 9√2/8;

(69.9k баллов)
0

решал кондовым методом нашел угол А отрезки на которые делит биссектрису саму биссектрису потом по свойству хорд нашеk МK то есть все стороны треугольника КМС потом по теореме синусов

0

ответ такой же

0

я привел этот "прямой" путь, как пример попытки войти в квартиру "прямо" через стену :)) рядом есть дверь, однако :))