См. рисунок. Плоскость синего цвета параллельна осевому сечению цилиндра, в ней и находится отрезок АВ. Найти расстояние от отрезка АВ до оси - это найти расстояние от хорда АК до диаметра ( см второй рисунок) Хорда АК находится по теореме Пифагора АК²=АВ²-ВК²=13²-5²= =(13-5)(13+5)=8·18=144=12² АК=12 м Чтобы найти расстояние надо найти высоту равнобедренного треугольника, боковые стороны которого равны радиусам - 10 м Проведем высоту в этом треугольнике, получим прямоугольный треугольник и по теореме Пифагора h²=10²-6²=100-36=64=8² Ответ 8 см