Отрезок АВ равен 13м, точки А и В лежат ** равных окружностях оснований цилиндр. Найдите...

0 голосов
286 просмотров
Отрезок
АВ равен 13м, точки А и В лежат на равных окружностях оснований цилиндр.
Найдите расстояние от отрезка АВ до оси цилиндра, если его высота равна 5 м, а
радиус основания равен 10 м.

Геометрия (313 баллов) | 286 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

См. рисунок. Плоскость синего цвета параллельна  осевому сечению цилиндра, в ней и находится отрезок АВ. Найти расстояние от отрезка АВ до оси - это найти расстояние от хорда АК до диаметра ( см второй рисунок)
Хорда АК находится по теореме Пифагора АК²=АВ²-ВК²=13²-5²=
=(13-5)(13+5)=8·18=144=12²
АК=12 м
Чтобы найти расстояние надо найти высоту равнобедренного треугольника, боковые стороны которого равны радиусам - 10 м
Проведем высоту в этом треугольнике, получим прямоугольный треугольник и
по теореме Пифагора
h²=10²-6²=100-36=64=8²
Ответ 8 см


image
(414k баллов)