Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящиеокружность на две дуги, длины которых относятся как 1:3. Найдите площадьсечения конуса плоскостью ABP
Градусная мера дуги АВ будет равна 90 градусов, т.к. по условию две дуги относятся друг к другу как 1/3 ( 90/270). Отсюда находим сторону АВ в треугольнике АОВ по теореме Пифагора, АВ = = . Далее находим высоту(h) треугольника АРВ, проведем перпендикуляр из точки Р к стороне АВ, пересекающаяся в точке С ( РС - h ), найдем её значение. РС = . Остюда по формуле S=ah/2 найдем площадь сечения. S=