ПОЖАЛУЙСТА:В правильном тетраэдре MABC с ребром корень из 6/2 проведено сечение через...

0 голосов
88 просмотров

ПОЖАЛУЙСТА:
В правильном тетраэдре MABC с ребром корень из 6/2 проведено сечение через середину ребра АВ параллельно плоскости АМС. Найдите расстояние между плоскостью сечения и плоскостью грани АМС
с рисунком
:*


Геометрия (58 баллов) | 88 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дан правильный тетраэдр МАВС. Все его ребра равны.
АВ=АС=ВС=МА=МВ=МС=√6/2.

Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ  проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В.  АМ || A₁M₁.  Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁
Соединим точки А₁ и С₁, получим треугольник  А₁С₁М₁ - нужное нам сечение.
Причем А₁С₁ || AC, так как является средней линией треугольника АВС.
Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4

Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС
ОА=ОС=ОМ=R
Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁
О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников  АМС и А₁М₁С₁ с коэффициентом подобия 2.

радиус окружности описанной около равностороннего треугольника можно найти по формуле

R= \frac{abc}{4S} = \frac{a\cdot a\cdot a}{4\cdot \frac{1}{2} \cdot a\cdot a\cdot sin 60 ^{o} } = \frac{a}{ \sqrt{3} }= \frac{a \sqrt{3} }{3}

при a=√6/2 получаем R=√6/2 ·√3/3=√2/2
Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1
Значит ВО₁=1/2 в силу подобия
и ОО₁=ВО-ВО₁=1/2
Ответ 1/2


image
(414k баллов)