в сосуд имеющий форму конуса, налито 10 мл жидкости, при этом уровень жидкости достигает...

0 голосов
70 просмотров
в сосуд имеющий форму конуса, налито 10 мл жидкости, при этом уровень жидкости достигает 2/5 высоты сосуда. сколько мл жидкости нужно долить, чтобы полностью наполнить сосуд?

Геометрия (25 баллов) | 70 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Объем большого конуса-V1,объем маленького-V2 Маленький конус подобен большому конусу с коэффициентом подобия-2/5, т.к.высота мал.конуса в 2/5 раза меньше высоты большого конуса:k=2/5. Объемы подобных фигур относятся друг к другу как кубы коэффициентов подобия: V1/V2 =k³; V1/V2=(2/5)³=8/125 =>чтобы наполнить большой конус,нужно в 8/125 раз больше жидкости,чем для мал.конуса Составим пропорцию: (8/125)=10/x; x=(10*125)/8=156,25 чтобы узнать,сколько нужно долить,из полученного объема вычитаем V1,получаем: 156,25-10(V1)=146,25мл

(101k баллов)