Составьте уравнение касательных к графику функции у=х4 +х2-2 в точках его пересечения с...

0 голосов
228 просмотров

Составьте уравнение касательных к графику функции у=х4 +х2-2 в точках его пересечения с осью абцисс.найдите точку пересечения этих касательных


Алгебра (15 баллов) | 228 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Y = x^4 + x^2 - 2 = 0
t^2 + t - 2 = 0, x^2 = t ≥ 0
D=9
t1 = (-1 - 3)/2 < 0 - посторонний корень
t2 = (-1+3)/2 = 2/2 = 1
x^2 = 1
x1= 1, x2 = -1 - это точки пересечения графика с осью абсцисс (Ох).
Y1 = y(x1) + y'(x1)*(x - x1) - уравнение первой касательной в точке x1
Y2 = y(x2) + y'(x2)*(x - x2) - уравнение второй касательной в точке x2
y'(x1) = 4*(x1)^3 + 2*(x1) = 4 + 2 = 6
y'(x2) = 4*(x2)^3 + 2*(x2) = -4 - 2 = -6
y(x1) = y(x2) = 0
Y1 = 6(x - 1) = 6x - 6
Y2 = -6(x+1) = -6x - 6
Y1 = Y2 - найдем точку пересечения касательных
6x - 6 = -6x - 6
12x = 0, x=0, Y1(0) = Y2(0) = -6
(0; -6) - точка пересечения касательных

(63.2k баллов)