AA1 = 2√3
OA1 = (2√3)/3
OA1 = A1B = A1C
A1B = (2√3)/3
A1C = (2√3)/3
BC =A1B + A1C = 2*(2√3)/3 = (4√3)/3
AA1² = AC²+ A1C²
(2√3)² = AC² + ((2√3)/3)²
AC² = (2√3)² - ((2√3)/3)²
(2√3)² = 4*3 = 12
((2√3)/3)² = (2/√3)² = 4/3
AC² = 12 - 4/3 = 32/3
AC = √(32/3)
AC = AB1 + CB1
AB1 = CB1
AC = 2*CB1
CB1 = AC/2
BB1² = BC² + CB1²
BB1² = BC² + (AC/2)²
BB1² = ((4√3)/3)² + (√(32/3)/2)²
((4√3)/3)² = (4/√3)² = 16/3
(√(32/3)/2)² = (32/3)/4 = 8/3
BB1² = (16/3)² + (8/3)²=(2²*8²)/9+8²/9 =
= 8²(2²+1)/9 =8²*(5)/9
BB1 = √(8²*(5)/9) = (8*√5)/3
Ответ : длина большей из этих медиан BB1 = (8*√5)/3
смотри рисунок