** касательной к окружности от точки касания C отложены по обе стороны от нее два отрезка...

0 голосов
138 просмотров

На касательной к окружности от точки касания C отложены по обе стороны от нее два отрезка CA и CB, причем угол AOC равен углу BOC ( O-центр окружности). Радиус окружности равен 8 см, AB=30 см. Найтм расстояние от центра окружности до точек A и B.


Геометрия (25 баллов) | 138 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Радиус, проведённый в точку касания, перпендикулярен касательной, поэтому угол АСО=углу ВСО=90 градусов. ОС=R=8, ΔАОС=ΔВОС по катету и острому углу (ОС-общий катет, угол АОС=углу ВОС по условию) тогда АО=ОВ и ΔАОВ - равнобедренный. В равнобедренном треугольнике высота является медианой и биссектрисой, поэтому АС=ВС=30:2=15 см. По т. Пифагора ОА=√ОС²+АС²=√8²+15²=√64+225=√289=17см, ОВ=17 см

(7.3k баллов)
0

Огромное спасибо)