Выяснить имеет ли корни уравнение: 2x^2+√3x+1=-√6x-2

0 голосов
29 просмотров

Выяснить имеет ли корни уравнение: 2x^2+√3x+1=-√6x-2


Алгебра (59 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Как я понимаю, запись x+2/x-1+x/x+1=6/x²-1 эквивалентна:
(x+2)/(x-1) + x/(x+1)=6/(x²-1)
1) как обычно, находим запрещенные корни - тут х не должно быть равно -1 и 1
2) домножаем уравнение на (х-1)*(х+1) , упрощаем
левая часть: (x+2)*(х-1)*(х+1)/(x-1) + x*(х-1)*(х+1)/(x+1)
(x+2)*(х+1) + x*(х-1) раскрываем скобки
х²+2х+х+2+х²-х итого левая часть получилась:
2х²+2х+2

правая часть: 6*(х-1)*(х+1)/(x²-1)=6*(х-1)*(х+1)/((x-1)*(х+1)) (мы представили разность квадратов х²-1 как произведение (х-1)*(х+1)) сокращаем на (х-1)*(х+1), получим 6

итак, наше уравнение имеет вид:
2х²+2х+2=6, переносим налево и делим на 2
х²+х-2=0
3) решаем квадратное уравнение, дискриминант равен 1+4*2=9
корни: х1=(-1-3)/2=-2, х2=(-1+3)/2=1
4) вспоминаем 1) - видим, что один корень не разрешен:х2=1 - его вычеркиваем, получаем
Ответ: один корень х=-2

(111 баллов)