Решить систему неравенств.

0 голосов
34 просмотров
Решить систему неравенств.

image

Алгебра (27 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image12} \atop {6x+5<4}} \right.\; \left \{ {{6x<-9} \atop {6x<-1}} \right. \; \to 6x<-9,\; x<-\frac{3}{2}\\\\2)\quad \left \{ {{3x+17<2} \atop {3-4x<19}} \right. \; \left \{ {{3x<-15} \atop {4x>-16}} \right. \; \left \{ {{x<-5} \atop {x>-4}} \right. \; \; net\; reshenij\\\\3)\quad \left \{ {{2y+3>1} \atop {4-y>2}} \right. \; \left \{ {{2y>-2} \atop {y<2}} \right. \; \left \{ {{y>-1} \atop {y<2}} \right. \to -1<y<2" alt="1)\quad \left \{ {{3-6x>12} \atop {6x+5<4}} \right.\; \left \{ {{6x<-9} \atop {6x<-1}} \right. \; \to 6x<-9,\; x<-\frac{3}{2}\\\\2)\quad \left \{ {{3x+17<2} \atop {3-4x<19}} \right. \; \left \{ {{3x<-15} \atop {4x>-16}} \right. \; \left \{ {{x<-5} \atop {x>-4}} \right. \; \; net\; reshenij\\\\3)\quad \left \{ {{2y+3>1} \atop {4-y>2}} \right. \; \left \{ {{2y>-2} \atop {y<2}} \right. \; \left \{ {{y>-1} \atop {y<2}} \right. \to -1<y<2" align="absmiddle" class="latex-formula">

4)\quad \left \{ {{1-3x \leq 16} \atop {6+2x \leq 6}} \right. \; \left \{ {{3x \geq -15} \atop {2x \leq 0}} \right. \; \left \{ {{x \geq -5} \atop {x \leq 0}} \right. \; \to -5 \leq x \leq 0

(834k баллов)