Найти интеграл sin^2x*cos^2x dx

0 голосов
33 просмотров

Найти интеграл sin^2x*cos^2x dx


Математика (15 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image \ \ 1-2Sin^2\alpha=Cos2\alpha \ \ => \\ => \ \ Sin^2\alpha=\frac{1+Cos2\alpha}{2} \\ \int {Sin^2x\cdot Cos^2x} \, dx =\frac{1}{8}\int {(1+Cos4x)dx=\frac{1}{8}( \int{}dx+\int{Cos4x}dx)" alt="Sin^2x\cdot Cos^2x=(Sinx\cdot Cosx)(Sinx\cdot Cosx)=\frac{1}{4}(Sin2x)(Sin2x)= \\ =\frac{1}{4}Sin^22x \\ Cos^2\alpha -Sin^2\alpha=Cos2\alpha \ \ => \ \ 1-2Sin^2\alpha=Cos2\alpha \ \ => \\ => \ \ Sin^2\alpha=\frac{1+Cos2\alpha}{2} \\ \int {Sin^2x\cdot Cos^2x} \, dx =\frac{1}{8}\int {(1+Cos4x)dx=\frac{1}{8}( \int{}dx+\int{Cos4x}dx)" align="absmiddle" class="latex-formula">
image \ \ 4xdx=du \ \ => \ \ \frac{du}{4}=dx \ \ => \\ => \ \ \int{Cos4x}dx=\frac{1}{4}\int{Cosu}du=\frac{Sinu}{4}=\frac{Sin4x}{4} \\ \int {Cos4x} dx=\frac{Sin4x}{4}" alt="\int {}dx=x \\ \int {Cos4x} dx: \\ 4x=u \ \ => \ \ 4xdx=du \ \ => \ \ \frac{du}{4}=dx \ \ => \\ => \ \ \int{Cos4x}dx=\frac{1}{4}\int{Cosu}du=\frac{Sinu}{4}=\frac{Sin4x}{4} \\ \int {Cos4x} dx=\frac{Sin4x}{4}" align="absmiddle" class="latex-formula">

\frac{1}{8}(\int{}dx+\int{Cos4x}dx)=\frac{1}{8}(x+\frac{Sin4x}{4})
(2.2k баллов)