![image](https://tex.z-dn.net/?f=log_%7Ba%7D%28%5Cfrac%7B3%2B2x%5E2%7D%7B1%2Bx%5E2%7D%29%2Blog_%7Ba%7D%28%5Cfrac%7B5%2B4x%5E2%7D%7B1%2Bx%5E2%7D%29%3E1+%5C%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7B%5Cfrac%7B3%2B2x%5E2%7D%7B1%2Bx%5E2%7D%3E0%7D+%5Catop+%7B%5Cfrac%7B5%2B4x%5E2%7D%7B1%2Bx%5E2%7D%3E0%7D%7D+%5Cright.%5C%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7Bx+%5Cin+%28-%5Cinfty%3B%5Cinfty%29%7D+%5Catop+%7B+x+%5Cin+%28-%5Cinfty+%3B%5Cinfty%29%7D%7D+%5Cright.+%5C%5C%5C%5C%0Alog_%7Ba%7D%28%5Cfrac%7B3%2B2x%5E2%7D%7B1%2Bx%5E2%7D%2A%5Cfrac%7B5%2B4x%5E2%7D%7B1%2Bx%5E2%7D%29%3E1%5C%5C%5C%5C%0Alog_%7Ba%7D%28%5Cfrac%7B%283%2B2x%5E2%29%285%2B4x%5E2%29%7D%7B%281%2Bx%5E2%29%5E2%7D%29%3E1%5C%5C%5C%5C%0A%5Cfrac%7B%283%2B2x%5E2%29%285%2B4x%5E2%29%7D%7B%281%2Bx%5E2%29%5E2%7D%3Ea%5C%5C%5C%5C%0A%5Cfrac%7B8x%5E4%2B22x%5E2%2B15%7D%7Bx%5E4%2B2x%5E2%2B1%7D%3Ea%5C%5C%5C%5C%0A8x%5E4%2B22x%5E2%2B15%3Eax%5E4%2B2ax%5E2%2Ba%5C%5C%5C%5C%0A)
1 \\\\
\left \{ {{\frac{3+2x^2}{1+x^2}>0} \atop {\frac{5+4x^2}{1+x^2}>0}} \right.\\\\
\left \{ {{x \in (-\infty;\infty)} \atop { x \in (-\infty ;\infty)}} \right. \\\\
log_{a}(\frac{3+2x^2}{1+x^2}*\frac{5+4x^2}{1+x^2})>1\\\\
log_{a}(\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2})>1\\\\
\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2}>a\\\\
\frac{8x^4+22x^2+15}{x^4+2x^2+1}>a\\\\
8x^4+22x^2+15>ax^4+2ax^2+a\\\\
" alt="log_{a}(\frac{3+2x^2}{1+x^2})+log_{a}(\frac{5+4x^2}{1+x^2})>1 \\\\
\left \{ {{\frac{3+2x^2}{1+x^2}>0} \atop {\frac{5+4x^2}{1+x^2}>0}} \right.\\\\
\left \{ {{x \in (-\infty;\infty)} \atop { x \in (-\infty ;\infty)}} \right. \\\\
log_{a}(\frac{3+2x^2}{1+x^2}*\frac{5+4x^2}{1+x^2})>1\\\\
log_{a}(\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2})>1\\\\
\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2}>a\\\\
\frac{8x^4+22x^2+15}{x^4+2x^2+1}>a\\\\
8x^4+22x^2+15>ax^4+2ax^2+a\\\\
" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=x%5E4%288-a%29%2Bx%5E2%2822-2a%29%2B15-a%3E0%5C%5C%5C%5C%0AD%3D%2822-2a%29%5E2-4%288-a%29%2815-a%29%3D%5Csqrt%7B4%28a-1%29%7D%3D2%5Csqrt%7Ba-1%7D+%5C%5C%5C%5C%0Ax%5E2%3D%5Cfrac%7B2a-22%2B2%5Csqrt%7Ba-1%7D%7D%7B8-a%7D+%5C%5C%5C%5C%0Ax%5E2%3D%5Cfrac%7B2a-22-2%5Csqrt%7Ba-1%7D%7D%7B8-a%7D%5C%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7B%5Cfrac%7B2a-22%2B2%5Csqrt%7Ba-1%7D%7D%7B8-a%7D%3C0%7D+%5Catop+%7B%5Cfrac%7B2a-22-2%5Csqrt%7Ba-1%7D%7D%7B8-a%7D%3C0%7D%7D+%5Cright.+%5C%5C%5C%5C%0A++++++++++++)
0\\\\
D=(22-2a)^2-4(8-a)(15-a)=\sqrt{4(a-1)}=2\sqrt{a-1} \\\\
x^2=\frac{2a-22+2\sqrt{a-1}}{8-a} \\\\
x^2=\frac{2a-22-2\sqrt{a-1}}{8-a}\\\\
\left \{ {{\frac{2a-22+2\sqrt{a-1}}{8-a}<0} \atop {\frac{2a-22-2\sqrt{a-1}}{8-a}<0}} \right. \\\\
" alt="x^4(8-a)+x^2(22-2a)+15-a>0\\\\
D=(22-2a)^2-4(8-a)(15-a)=\sqrt{4(a-1)}=2\sqrt{a-1} \\\\
x^2=\frac{2a-22+2\sqrt{a-1}}{8-a} \\\\
x^2=\frac{2a-22-2\sqrt{a-1}}{8-a}\\\\
\left \{ {{\frac{2a-22+2\sqrt{a-1}}{8-a}<0} \atop {\frac{2a-22-2\sqrt{a-1}}{8-a}<0}} \right. \\\\
" align="absmiddle" class="latex-formula">
С учетом
Получаем