1 \\\\
\left \{ {{\frac{3+2x^2}{1+x^2}>0} \atop {\frac{5+4x^2}{1+x^2}>0}} \right.\\\\
\left \{ {{x \in (-\infty;\infty)} \atop { x \in (-\infty ;\infty)}} \right. \\\\
log_{a}(\frac{3+2x^2}{1+x^2}*\frac{5+4x^2}{1+x^2})>1\\\\
log_{a}(\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2})>1\\\\
\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2}>a\\\\
\frac{8x^4+22x^2+15}{x^4+2x^2+1}>a\\\\
8x^4+22x^2+15>ax^4+2ax^2+a\\\\
" alt="log_{a}(\frac{3+2x^2}{1+x^2})+log_{a}(\frac{5+4x^2}{1+x^2})>1 \\\\
\left \{ {{\frac{3+2x^2}{1+x^2}>0} \atop {\frac{5+4x^2}{1+x^2}>0}} \right.\\\\
\left \{ {{x \in (-\infty;\infty)} \atop { x \in (-\infty ;\infty)}} \right. \\\\
log_{a}(\frac{3+2x^2}{1+x^2}*\frac{5+4x^2}{1+x^2})>1\\\\
log_{a}(\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2})>1\\\\
\frac{(3+2x^2)(5+4x^2)}{(1+x^2)^2}>a\\\\
\frac{8x^4+22x^2+15}{x^4+2x^2+1}>a\\\\
8x^4+22x^2+15>ax^4+2ax^2+a\\\\
" align="absmiddle" class="latex-formula">
0\\\\
D=(22-2a)^2-4(8-a)(15-a)=\sqrt{4(a-1)}=2\sqrt{a-1} \\\\
x^2=\frac{2a-22+2\sqrt{a-1}}{8-a} \\\\
x^2=\frac{2a-22-2\sqrt{a-1}}{8-a}\\\\
\left \{ {{\frac{2a-22+2\sqrt{a-1}}{8-a}<0} \atop {\frac{2a-22-2\sqrt{a-1}}{8-a}<0}} \right. \\\\
" alt="x^4(8-a)+x^2(22-2a)+15-a>0\\\\
D=(22-2a)^2-4(8-a)(15-a)=\sqrt{4(a-1)}=2\sqrt{a-1} \\\\
x^2=\frac{2a-22+2\sqrt{a-1}}{8-a} \\\\
x^2=\frac{2a-22-2\sqrt{a-1}}{8-a}\\\\
\left \{ {{\frac{2a-22+2\sqrt{a-1}}{8-a}<0} \atop {\frac{2a-22-2\sqrt{a-1}}{8-a}<0}} \right. \\\\
" align="absmiddle" class="latex-formula">
С учетом
Получаем