0;x \neq 1;x \neq 16;x \neq 64
\\\
\cfrac{1}{log_{2}x} \cdot \cfrac{1}{log_{2} \frac{x}{16}} =\cfrac{1}{log_{2} \frac{x}{64}}
\\\
\frac{1}{log_{2}x} \cdot \frac{1}{log_{2}-log_{2}16} =\frac{1}{log_{2}-log_{2}64}
\\\
\frac{1}{log_{2}x} \cdot \frac{1}{log_{2}-4} =\frac{1}{log_{2}-6} " alt="(log_{x}2)(log_{ \frac{x}{16}}2)=log_{ \frac{x}{64} }2
\\\
x>0;x \neq 1;x \neq 16;x \neq 64
\\\
\cfrac{1}{log_{2}x} \cdot \cfrac{1}{log_{2} \frac{x}{16}} =\cfrac{1}{log_{2} \frac{x}{64}}
\\\
\frac{1}{log_{2}x} \cdot \frac{1}{log_{2}-log_{2}16} =\frac{1}{log_{2}-log_{2}64}
\\\
\frac{1}{log_{2}x} \cdot \frac{1}{log_{2}-4} =\frac{1}{log_{2}-6} " align="absmiddle" class="latex-formula">
Ответ: 4; 8