cos x=t,
6t²-7t-5=0,
D=169,
t1=-½, t2=1 ⅔>1,
cos x=-½,
x=±arccos (-½) + 2πk, k∈Z,
x=±(π-arccos (½)) + 2πk, k∈Z,
x=±(π-π/3) + 2πk, k∈Z,
x=±2π/3 + 2πk, k∈Z,
-7π/2<±2π/3 + 2πk<-5π/2,</p>
[-7π/2-2π/3<2πk<-5π/2-2π/3, -7π/2+2π/3<2πk<-5π/2+2π/3,</p>
[-25π/6<2πk<-19π/6, -17π/6<2πk<-11π/6,</p>
[-25/12
[k=-2, k=-1,
x=2π/3 - 4π,
x=-10π/3;
x=-2π/3-2π,
x=-8π/3.