1.Рассмотрим два треугольника QBP и QEP, где Е-общая точка пересечения окружностей. эти треук равны, значит углы соответственно равны. Также QВРЕ-ромб, следоват ВР параллельно QЕ, и ЕР параллельно QВ.
2.Рассмотрим 2 четырехугольника ОАQЕ и ОQРС -это ромбы, АО паралл
QЕ, ОС паралл РЕ, следовательноугАОС=угQЕР, тогда из равенства треуг QЕР=треугАОС, следоват АС=QР
3. если рассмотреть два четырехугольника ОQВС и ОАВР, ОС парал ЕР и парал QВ, а таже они равны = R., значит
ОQВС
-параллелограм по (насколько помню) первому признаку тогда QO=BC, а так же они паралл. аналогично доказывается что ОАВР-параллелогр., а значит АВ=ОР, мы доказали, что в треуг ОРQ и АВС
АС=QР,
QO=BC,
АВ=ОР, а раз три стороны соответственно равны, то треуг=.