Ответ:
-П; -33П/32; -41П/32; -43П/32; -35П/32
Объяснение:
cos 9x - cos 7x = √2*sin x
Найти корни на отрезке [-3П/2; -П]
Есть формула разности косинусов:
![cos(a)-cos(b)=-2sin\frac{a+b}{2}*sin\frac{a-b}{2} cos(a)-cos(b)=-2sin\frac{a+b}{2}*sin\frac{a-b}{2}](https://tex.z-dn.net/?f=cos%28a%29-cos%28b%29%3D-2sin%5Cfrac%7Ba%2Bb%7D%7B2%7D%2Asin%5Cfrac%7Ba-b%7D%7B2%7D)
Подставляем:
![cos(9x)-cos(7x)=-2sin\frac{9x+7x}{2}*sin\frac{9x-7x}{2}=-2sin(8x)sin(x) cos(9x)-cos(7x)=-2sin\frac{9x+7x}{2}*sin\frac{9x-7x}{2}=-2sin(8x)sin(x)](https://tex.z-dn.net/?f=cos%289x%29-cos%287x%29%3D-2sin%5Cfrac%7B9x%2B7x%7D%7B2%7D%2Asin%5Cfrac%7B9x-7x%7D%7B2%7D%3D-2sin%288x%29sin%28x%29)
Подставляем в наше уравнение:
-2sin 8x*sin x = √2*sin x
0 = √2*sin x + 2sin 8x*sin x
sin x*(√2 + 2sin 8x) = 0
1) sin x = 0; x = Пk.
На указанном отрезке будет корень
x1 = -П
2) √2 + 2sin 8x = 0
sin 8x = -√2/2
8x = -П/4 + 2Пk; x = -П/32 + Пk/4
На указанном отрезке [-3П/2; -П] = [-48П/32; -32П/32] будут корни:
x2 = -П/32 - П = -33П/32
x3 = -П/32 - 5П/4 = -41П/32
3) sin 8x = -√2/2
8x = 5П/4 + 2Пk
x = 5П/32 + Пk/4
На указанном отрезке [-3П/2; -П] = [-48П/32; -32П/32] будут корни:
x4 = 5П/32 - 6П/4 = -43П/32
x5 = 5П/32 - 5П/4 = -35П/32