1)Объем треугольной пирамиды SABC равен 54. Плоскость проходит через среднюю линию МР...

+604 голосов
2.4m просмотров

1)Объем треугольной пирамиды SABC равен 54. Плоскость проходит через среднюю линию МР основания АВС этой пирамиды ( МР II АС) и пересекает противоположное боковое ребро в точке D, делящей это ребро в отношении 1: 8, считая от вершины S. Найдите объем пирамиды DМРB2)Найти объем треугольной пирамиды SDBC, являющейся частью правильной шестиугольной пирамиды SABCDEF, если объем шестиугольной пирамиды равен72 .3)Стороны основания правильной четырехугольной пирамиды равны 12, боковые ребра равны 10. Найдите объем этой пирамиды.буду очень благодарен


Геометрия | 2.4m просмотров
Дан 1 ответ
+121 голосов

Відповідь:

Пусть данная пирамида будет МАВС, а сечение её плоскостью - АВТ. 

МТ:ТС=7:8 

Плоскость разбила исходную пирамиду на две с общим основанием АВТ и вершинами С - в нижней и М- в верхней. 

Проведем в плоскости сечения прямую ТН, а из вершин образовавшихся пирамид их высоты СК и МЕ перпендикулярно к этой прямой, лежащей в плоскости сечения, а значит и перпендикулярно  плоскости их общего основания. 

Треугольники МЕТ и СТК прямоугольные с равными острыми углами МТЕ=СТК - они вертикальные.

Следовательно, эти треугольники подобны, и отношение их высот равно отношению их сторон, т.е. 

МЕ:СК=МТ:СТ=7:8 

Объем пирамиды равен 1/3 произведения её высоты на площадь основания. 

Основание у обеих пирамид общее, следовательно, их объемы относятся как 7:8 

Содержание одной части этого отношения равно 30:(7+8)=2 

Объем пирамид с равным основанием больше у той, чья высота больше.

 V САВТ=2*8=16 (ед. объема) 

Пояснення:

Пусть данная пирамида будет МАВС, а сечение её плоскостью - АВТ. 

МТ:ТС=7:8 

Плоскость разбила исходную пирамиду на две с общим основанием АВТ и вершинами С - в нижней и М- в верхней. 

Проведем в плоскости сечения прямую ТН, а из вершин образовавшихся пирамид их высоты СК и МЕ перпендикулярно к этой прямой, лежащей в плоскости сечения, а значит и перпендикулярно  плоскости их общего основания. 

Треугольники МЕТ и СТК прямоугольные с равными острыми углами МТЕ=СТК - они вертикальные.

Следовательно, эти треугольники подобны, и отношение их высот равно отношению их сторон, т.е. 

МЕ:СК=МТ:СТ=7:8 

Объем пирамиды равен 1/3 произведения её высоты на площадь основания. 

Основание у обеих пирамид общее, следовательно, их объемы относятся как 7:8 

Содержание одной части этого отношения равно 30:(7+8)=2 

Объем пирамид с равным основанием больше у той, чья высота больше.

 V САВТ=2*8=16 (ед. объема) 

(78 баллов)