Ответ: Ну ваще!
Объяснение:
Было:
1. С помощью линейки проводим произвольную прямую и отмечаем на ней точку В
2. Теперь раствором циркуля, равным b, описываем окружность из центра С. Пусть A — точка пресечения этих окружностей
3. Раствором циркуля, равным a, описываем окружность с центром B и радиусом a. Пусть С — точка пересечения окружности с прямой
4. Теперь раствором циркуля, равным c, описываем окружность из центра B
5. Проведем отрезки CA и BA. Полученный Δ ABC имеет стороны, равные a, b и c
Стало:
1. С помощью линейки проводим произвольную прямую и отмечаем на ней точку В
2. Раствором циркуля, равным a, описываем окружность с центром B и радиусом a. Пусть С — точка пересечения окружности с прямой
3. Теперь раствором циркуля, равным c, описываем окружность из центра B
4. Теперь раствором циркуля, равным b, описываем окружность из центра С. Пусть A — точка пресечения этих окружностей
5. Проведем отрезки CA и BA. Полученный Δ ABC имеет стороны, равные a, b и c