![image](https://tex.z-dn.net/?f=D%28f%29%3A+x%3E0%3D%3D%3Ex%5Cin%280%3B%2B%5Cinfty%29)
0==>x\in(0;+\infty)" alt="D(f): x>0==>x\in(0;+\infty)" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=y%3D4%5Cln+x-+%5Cfrac%7Bx%5E2%7D%7B2%7D%3B%5C%5C%0A+y%27%3D+%5Cfrac%7B4%7D%7Bx%7D-x%5C%5C+y%27%3D0%3B+%5Cfrac%7B4-x%5E2%7D%7Bx%7D%3D0%3B%0A%5C%5C+x%3D2%5Cin%280%3B%2B%5Cinfty%29%0A%5C%5C+x%3D-2%5Cnotin%280%3B%2B%5Cinfty%29%3B%5C%5C%0A+x%5Cneq0%3B%5C%5C+%0A%3A%5C%5C%0A++0+y%27%3E0%3B%5C%5C%0A+2y%27%3C0%3B%5C%5C%0Ay_%7Bmax%7D%3Dy%282%29%3D4%5Cln2-+%5Cfrac%7B2%5E2%7D%7B2%7D%3D%5Cln8-2%3B%5C%5C+)
0;\\
2y'<0;\\
y_{max}=y(2)=4\ln2- \frac{2^2}{2}=\ln8-2;\\ " alt="y=4\ln x- \frac{x^2}{2};\\
y'= \frac{4}{x}-x\\ y'=0; \frac{4-x^2}{x}=0;
\\ x=2\in(0;+\infty)
\\ x=-2\notin(0;+\infty);\\
x\neq0;\\
:\\
0 y'>0;\\
2y'<0;\\
y_{max}=y(2)=4\ln2- \frac{2^2}{2}=\ln8-2;\\ " align="absmiddle" class="latex-formula"><+\infty==><2==>
при
![x\in(0;2] x\in(0;2]](https://tex.z-dn.net/?f=x%5Cin%280%3B2%5D)
функция растёт
при
![x\in[2;+\infty) x\in[2;+\infty)](https://tex.z-dn.net/?f=x%5Cin%5B2%3B%2B%5Cinfty%29)
функция убывает
в х=2 максимум функции, причем у(2)=ln8-2<+\infty><2===><0><-2>