Ответ:
Объяснение:
log_3((x+1)(x-2))-log_3(\frac{x+1}{x-2} )\leq 1\\log_3(x-2)^2\leq 1<=>|x-2|\leq \sqrt{3}=>2-\sqrt{3}\leqx\leq 2+\sqrt{3}" alt="log_3(x^2-x-2)\leq 1+log_3(\frac{x+1}{x-2} )<=>log_3((x+1)(x-2))-log_3(\frac{x+1}{x-2} )\leq 1\\log_3(x-2)^2\leq 1<=>|x-2|\leq \sqrt{3}=>2-\sqrt{3}\leqx\leq 2+\sqrt{3}" align="absmiddle" class="latex-formula">
ОДЗ:0=>(x+1)(x-2)>0=>" alt="x^2-x-2>0=>(x+1)(x-2)>0=>" align="absmiddle" class="latex-formula">x∈(-∞;-1)∪(2;+∞)