Найдём углы АВС. Поскольку треугольник АВС равнобедренный (АВ ==ВС), то углы при основании равны: ∠А = ∠С = (180⁰ - 58⁰):2 = 61⁰
Треугольники АВС и МКС подобны, т.к. АВ || МК, отчего ∠ В (тр-ка АВС) = ∠МКС (тр-ка МКС). Это соответственные углы при параллельных прямых АВ || МК и секущей ВС. Точно поэтому же равны ∠ А (тр-ка АВС) = ∠ СМК (тр-ка МКС). ∠ С у тр-ков АВС и МКС общий.
Итак, Δ АВС подобен Δ МКС по трём равным углам.
Тогда углы ΔМКС таковы:
∠СКМ = ∠В = 58⁰
∠ СМК = ∠А = 61⁰
∠ С = ∠С = 61⁰