a)
\left \{ {{x_1=0} \atop {x_2=-\frac{1}{5} }} \right." alt="5x^2+x=0\\ x(5x+1)=0\\ \\ \left \{ {{x_1=0} \atop {5x+1=0}} \right. =>\left \{ {{x_1=0} \atop {x_2=-\frac{1}{5} }} \right." align="absmiddle" class="latex-formula">
б)
\left \{ {{x_1=2} \atop {x_2=\frac{22}{9} }} \right." alt="(6-3x)^2=4x-8\\36-36x+9x^2-4x+8=0\\ 44-40x+9x^2=0\\ 9x^2-40x+44=0\\ 9x^2-18x-22x+44=0\\ 9x(x-2)-22(x-2)=0\\(x-2)(9x-22)=0\\\\\left \{ {{x-2=0} \atop {9x-22=0}} \right. =>\left \{ {{x_1=2} \atop {x_2=\frac{22}{9} }} \right." align="absmiddle" class="latex-formula">
можно было решить дискриминантом
в)
![2x^3-10x^2+3x-15=0\\2x^2(x-5)+3(x-5)=0\\(x-5)(2x^2+3)=0\\\\x-5=0\\x_1=5\\\\2x^2=-3\\x \in \emptyset\\\\x=5 2x^3-10x^2+3x-15=0\\2x^2(x-5)+3(x-5)=0\\(x-5)(2x^2+3)=0\\\\x-5=0\\x_1=5\\\\2x^2=-3\\x \in \emptyset\\\\x=5](https://tex.z-dn.net/?f=2x%5E3-10x%5E2%2B3x-15%3D0%5C%5C2x%5E2%28x-5%29%2B3%28x-5%29%3D0%5C%5C%28x-5%29%282x%5E2%2B3%29%3D0%5C%5C%5C%5Cx-5%3D0%5C%5Cx_1%3D5%5C%5C%5C%5C2x%5E2%3D-3%5C%5Cx%20%5Cin%20%5Cemptyset%5C%5C%5C%5Cx%3D5)