а)
0 \Leftrightarrow x \in R" alt="10^{lg(0,5x^2)} = 8 \;\;\;ODZ:\; 0,5x^2 > 0 \Leftrightarrow x \in R" align="absmiddle" class="latex-formula">
Выразим lg(0,5x²), пользуясь определением логарифма и найдём значение x
![lg(0,5x^2) = log_{10}8 \\\\lg(0,5x^2) = lg8 \\\\0,5x^2 = 8 \\x^2 = \frac{8}{0,5} = \frac{80}{5} = 16\\\\x = \pm4 lg(0,5x^2) = log_{10}8 \\\\lg(0,5x^2) = lg8 \\\\0,5x^2 = 8 \\x^2 = \frac{8}{0,5} = \frac{80}{5} = 16\\\\x = \pm4](https://tex.z-dn.net/?f=lg%280%2C5x%5E2%29%20%3D%20log_%7B10%7D8%20%5C%5C%5C%5Clg%280%2C5x%5E2%29%20%3D%20lg8%20%5C%5C%5C%5C0%2C5x%5E2%20%3D%208%20%5C%5Cx%5E2%20%3D%20%5Cfrac%7B8%7D%7B0%2C5%7D%20%3D%20%5Cfrac%7B80%7D%7B5%7D%20%3D%2016%5C%5C%5C%5Cx%20%3D%20%5Cpm4)
Ответ: 4, -4
б)
0" alt="x^{1-lgx} = 0,01 \;\;\;ODZ:\; x > 0" align="absmiddle" class="latex-formula">
Прологарифмируем левую и правую часть по основанию 10
![lg(x^{1-lgx}) = lg(0,01)\\\\(1-lgx)\cdot lg(x) = lg(10^{-2})\\\\(1-lg(x))\cdot lg(x) = -2 lg(x^{1-lgx}) = lg(0,01)\\\\(1-lgx)\cdot lg(x) = lg(10^{-2})\\\\(1-lg(x))\cdot lg(x) = -2](https://tex.z-dn.net/?f=lg%28x%5E%7B1-lgx%7D%29%20%3D%20lg%280%2C01%29%5C%5C%5C%5C%281-lgx%29%5Ccdot%20lg%28x%29%20%3D%20lg%2810%5E%7B-2%7D%29%5C%5C%5C%5C%281-lg%28x%29%29%5Ccdot%20lg%28x%29%20%3D%20-2)
Обозначим за lg(x) переменную t
![lg(x) = t\\(1-t)\cdot t + 2 =0\\-t^2+t+2 = 0\;\;|\cdot (-1) \\t^2 - t - 2 = 0\\\\\left \{ {{t_1+t_2=1} \atop {t_1\cdot t_2=-2}} \right. \Rightarrow t_1 = 2,\;\;t_2 = -1 lg(x) = t\\(1-t)\cdot t + 2 =0\\-t^2+t+2 = 0\;\;|\cdot (-1) \\t^2 - t - 2 = 0\\\\\left \{ {{t_1+t_2=1} \atop {t_1\cdot t_2=-2}} \right. \Rightarrow t_1 = 2,\;\;t_2 = -1](https://tex.z-dn.net/?f=lg%28x%29%20%3D%20t%5C%5C%281-t%29%5Ccdot%20t%20%2B%202%20%3D0%5C%5C-t%5E2%2Bt%2B2%20%3D%200%5C%3B%5C%3B%7C%5Ccdot%20%28-1%29%20%5C%5Ct%5E2%20-%20t%20-%202%20%3D%200%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bt_1%2Bt_2%3D1%7D%20%5Catop%20%7Bt_1%5Ccdot%20t_2%3D-2%7D%7D%20%5Cright.%20%5CRightarrow%20t_1%20%3D%202%2C%5C%3B%5C%3Bt_2%20%3D%20-1)
Вернём замену и найдём x
![1. \\lg(x) = 2\\x = 100\\\\2.\\lg(x) = -1\\x = 0,1 1. \\lg(x) = 2\\x = 100\\\\2.\\lg(x) = -1\\x = 0,1](https://tex.z-dn.net/?f=1.%20%5C%5Clg%28x%29%20%3D%202%5C%5Cx%20%3D%20100%5C%5C%5C%5C2.%5C%5Clg%28x%29%20%3D%20-1%5C%5Cx%20%3D%200%2C1)
Ответ: 100; 0,1