Из города в деревню вышел пешеход. через 45 минут после его выхода в том же направлении...

0 голосов
44 просмотров

Из города в деревню вышел пешеход. через 45 минут после его выхода в том же направлении выехал велосипедист, который через полчаса был позади пешехода на 2,5 км, еще через полчаса велосипедист был на полкилометра от деревни дальше, чем пешеход. Какова скорость пешехода и велосипедиста, если длина пути от города до деревни равна 30 км?


Алгебра (778 баллов) | 44 просмотров
Дан 1 ответ
0 голосов

Задача неординарная. Требует критическое и аналитическое мышления.  

Решение данной задачи через систему уравнений - неверный  выбор, так как слишком много неизвестных.  

Итак, начнем решение задачи аналитическим путем.  

Исходя из условия, мы понимаем, что велосипедист за 30 минут приблизился к пешеходу на 2 километра.  То есть, его скорость приближения равна 2км/30минут, или 4км/час.  

Отсюда, мы можем вытащить скорость велосипеда. Из условия понятно, что скорость велосипеда больше скорости пешехода, так как в противном случае, за 30 минут он был бы также на 2.5 км дальше.  

Поэтому, скорость велосипедиста равна скорости пешехода + 4км/ч.

Vв = Vп + 4км/ч

Теперь разберем расстояние, пройденное за 1 час, с момента, когда выехал велосипедист.  

Исходя из формулы скорости Велосипедиста, мы понимаем, что он проехал как минимум 4 км за 1 час. Также, мы знаем, что за этот же час, он проехал дополнительные 2 км, приблизившись к пешеходу до 0.5 км.  

Теперь складываем 4км + 2км, получается 6 км.  

Это есть расстояние, пройденное пешеходом за 1 час.  

Отсюда, находим форму его скорости = 6км/ч  

Vп =  6км/ч  

Исходя из формулы скорости велосипедиста, его скорости равна  

Vв = Vп + 4км/ч = 6км/ч + 4км/ч = 10км/ч

(18 баллов)