1.
---
а) cos3x = √2/2 ;
3x =± π/4 +2πn ,n∈Z ⇔x =± π/12 +(2π/3)*n ,n∈Z.
б) 3cos²x +cosx -4=0 ⇔|| замена : t =cosx , | t | ≤ || получается кв. уравн. || ;
3t² +t -4= 0 ;
D =1² -4*3*(-4) =49 =7²
t₁ =(-1-7)/(2*3) =- 4/3 ||cosx = - 4/3 < -1 не имеет решения ||<br>t₂ =(-1+7)/6 =1 ⇒cosx =1 ; x =2πn ,n∈Z.
в) √3cos2x +sin2x =0 ⇔sin2x = -√3 cos2x ⇔tq2x = -√3 ;
2x = -π/3 +π*n , n∈Z ⇔ x = -π/6 +(π/2)*n n∈Z .
или по другому :
√3cos2x +sin2x =0 ;
2*(√3/2)cos2x +(1/2)sin2x ) =0 ;
2*(cos(π/6)*cos2x +sin(π/6)*sin2x) =0 ;
2cos(2x -π/6) =0 ;
cos(2x -π/6) =0;
2x -π/6 =π/2 + π*n ,n∈z ;
x=π/3 + π/2*n ,n∈z.
г) 4sin²x -5sinx*cosx -6cos²x =0 || разделим на cos²x ||
4tq²x -5tqx -6 =0 || замена : t =tqx ||
4t² - 5t -6 =0 ; D =5² -4*4(-6) =121=11²
t₁ =(5-11) / (2*4) = - 6/8 = -3/4 ;
t₂ =(5+11) / 8 = 2 .
tqx =t₁ ⇒ tqx = (-3/4)⇒x = -arctq(3/4) +π*n ,n∈Z.
tqx =t₂ ⇒ tqx = 2⇒ x =arctq(2) +π*n , n∈Z.
2.
---
а) sinx > 1/√2 ;
2πn +π/4 < x < (π -π/4) + 2πn ,n∈Z⇔ π/4+2πn < x < 3π/4 + 2πn <span> ,n∈Z .
б) cos²x -sin²x ≤1/2 ⇔cos2x ≤ 1/2 ;
π/3 +2πn ≤ 2x ≤ (2π -π/3) +2πn ,n∈Z ⇔ π/6 +πn ≤ x ≤ 5π/6 +πn ,n∈Z .
3)
{ x+y =π/2 ; cosx +siny ⇔√2 ⇔{ y =π/2 - x ; cosx +sin(π/2 - x) =√2
{ y =π/2 - x ; cosx +cosx =√2 ⇔{ y =π/2 - x ; 2cosx =√2⇔{ y =π/2 -x ; cosx =√2/2.
x =±π/4 + 2π*n , n∈Z.
y =π/2 - (±π/4 + 2π*n) , n∈Z. || π/4 - 2π*n или 3π/4 - 2π*n ||