0} \atop {2x+3>0}} \right. \; \left \{ {{x\ne 0} \; \; \atop {x>-1,5}} \right\; \; \Rightarrow \; \; x\in (-1,5\, ;0)\cup (0;+\infty )\\\\\star \; \; a^{log_{b}c}=c^{log_{b}a}\; \; \star \\\\3^{2log_2|x|}+2\cdot 9^{log_2|x|}\leq 3\cdot 3^{-log_{0,5}(2x+3)}\\\\9^{log_2|x|}+2\cdot 9^{log_2|x|}\leq 3\cdot 3^{log_2(2x+3)}\\\\3\cdot 9^{log_2|x|}\leq 3\cdot 3^{log_2(2x+3)}\\\\3^{2log_2|x|}\leq 3^{log_2(2x+3)}" alt="3^{log_2x^2}+2\cdot |x|^{log_29}\leq 3\cdot \Big (\frac{1}{3}\Big )^{log_{0,5}(2x+3)}\\\\ODZ:\; \; \left \{ {{x^2>0} \atop {2x+3>0}} \right. \; \left \{ {{x\ne 0} \; \; \atop {x>-1,5}} \right\; \; \Rightarrow \; \; x\in (-1,5\, ;0)\cup (0;+\infty )\\\\\star \; \; a^{log_{b}c}=c^{log_{b}a}\; \; \star \\\\3^{2log_2|x|}+2\cdot 9^{log_2|x|}\leq 3\cdot 3^{-log_{0,5}(2x+3)}\\\\9^{log_2|x|}+2\cdot 9^{log_2|x|}\leq 3\cdot 3^{log_2(2x+3)}\\\\3\cdot 9^{log_2|x|}\leq 3\cdot 3^{log_2(2x+3)}\\\\3^{2log_2|x|}\leq 3^{log_2(2x+3)}" align="absmiddle" class="latex-formula">