![\log_7(x^2-9)-\log_7(9-2x)=1 \log_7(x^2-9)-\log_7(9-2x)=1](https://tex.z-dn.net/?f=%5Clog_7%28x%5E2-9%29-%5Clog_7%289-2x%29%3D1)
ОДЗ: подлогарифмические выражения должны быть больше нуля:
0 \\ 9-2x>0 \end{array}" alt="\left\{\begin{array}{l} x^2-9>0 \\ 9-2x>0 \end{array}" align="absmiddle" class="latex-formula">
0 \\ 2x<9 \end{array}" alt="\left\{\begin{array}{l} (x-3)(x+3)>0 \\ 2x<9 \end{array}" align="absmiddle" class="latex-formula">
![\left\{\begin{array}{l} x\in(-\infty;\,-3)\cup(3;\,+\infty) \\ x<4.5 \end{array} \left\{\begin{array}{l} x\in(-\infty;\,-3)\cup(3;\,+\infty) \\ x<4.5 \end{array}](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%20x%5Cin%28-%5Cinfty%3B%5C%2C-3%29%5Ccup%283%3B%5C%2C%2B%5Cinfty%29%20%5C%5C%20x%3C4.5%20%5Cend%7Barray%7D)
![x\in(-\infty;\,-3)\cup(3;\,4.5) x\in(-\infty;\,-3)\cup(3;\,4.5)](https://tex.z-dn.net/?f=x%5Cin%28-%5Cinfty%3B%5C%2C-3%29%5Ccup%283%3B%5C%2C4.5%29)
Решаем уравнение:
![\log_7\dfrac{x^2-9}{9-2x}=1\\\log_7\dfrac{x^2-9}{9-2x}=\log_77\\\dfrac{x^2-9}{9-2x}=7\\x^2-9=7(9-2x)\\x^2-9=63-14x\\x^2+14x-72=0\\D_1=7^2-1\cdot72=121\\x_1=-7-11=-18\\x_2=-7+11=4 \log_7\dfrac{x^2-9}{9-2x}=1\\\log_7\dfrac{x^2-9}{9-2x}=\log_77\\\dfrac{x^2-9}{9-2x}=7\\x^2-9=7(9-2x)\\x^2-9=63-14x\\x^2+14x-72=0\\D_1=7^2-1\cdot72=121\\x_1=-7-11=-18\\x_2=-7+11=4](https://tex.z-dn.net/?f=%5Clog_7%5Cdfrac%7Bx%5E2-9%7D%7B9-2x%7D%3D1%5C%5C%5Clog_7%5Cdfrac%7Bx%5E2-9%7D%7B9-2x%7D%3D%5Clog_77%5C%5C%5Cdfrac%7Bx%5E2-9%7D%7B9-2x%7D%3D7%5C%5Cx%5E2-9%3D7%289-2x%29%5C%5Cx%5E2-9%3D63-14x%5C%5Cx%5E2%2B14x-72%3D0%5C%5CD_1%3D7%5E2-1%5Ccdot72%3D121%5C%5Cx_1%3D-7-11%3D-18%5C%5Cx_2%3D-7%2B11%3D4)
Оба корня удовлетворяют ОДЗ.
Ответ: -18 и 4
![4-\lg^2x=3\lg x 4-\lg^2x=3\lg x](https://tex.z-dn.net/?f=4-%5Clg%5E2x%3D3%5Clg%20x)
ОДЗ:
0" alt="x>0" align="absmiddle" class="latex-formula">
![\lg^2x+3\lg x-4=0\\D=3^2-4\cdot1\cdot(-4)=25\\\lg x_1=\dfrac{-3-5}{2}=-4 \Rightarrow x_1=10^{-4}=\dfrac{1}{10^4} =\dfrac{1}{10000}\\\\\lg x_2=\dfrac{-3+5}{2}=1 \Rightarrow x_2=10^1=10 \lg^2x+3\lg x-4=0\\D=3^2-4\cdot1\cdot(-4)=25\\\lg x_1=\dfrac{-3-5}{2}=-4 \Rightarrow x_1=10^{-4}=\dfrac{1}{10^4} =\dfrac{1}{10000}\\\\\lg x_2=\dfrac{-3+5}{2}=1 \Rightarrow x_2=10^1=10](https://tex.z-dn.net/?f=%5Clg%5E2x%2B3%5Clg%20x-4%3D0%5C%5CD%3D3%5E2-4%5Ccdot1%5Ccdot%28-4%29%3D25%5C%5C%5Clg%20x_1%3D%5Cdfrac%7B-3-5%7D%7B2%7D%3D-4%20%5CRightarrow%20x_1%3D10%5E%7B-4%7D%3D%5Cdfrac%7B1%7D%7B10%5E4%7D%20%3D%5Cdfrac%7B1%7D%7B10000%7D%5C%5C%5C%5C%5Clg%20x_2%3D%5Cdfrac%7B-3%2B5%7D%7B2%7D%3D1%20%5CRightarrow%20x_2%3D10%5E1%3D10)
Оба корня удовлетворяют ОДЗ.
Ответ: 1/10000 и 10