Запишем данную сумму двух членов через первый член и разность:

По формуле суммы первых n членов арифметической прогрессии:

Составим систему уравнений:
{2а₁ + 14d = 55
{2a₁ + 5d = 32.5
Вычтем нижнее уравнение из верхнего, найдем разность прогрессии:
9d = 22.5
d = 2.5
Найдем первый член:
2a₁ + 5d = 32.5
2a₁ + 5*2.5 = 32.5
2a₁ + 12.5 = 32.5
2a₁ = 32.5 - 12.5
2a₁ = 20
a₁ = 10
Найдем число членов:
а₁ + d(n-1) = 55
10 + 2.5(n-1) = 55
2.5(n-1) = 45
n-1 = 18
n = 19