
ОДЗ:
0} \atop {x+1>0}} \right. " alt=" \left \{ {{3x-1>0} \atop {x+1>0}} \right. " align="absmiddle" class="latex-formula">
1} \atop {x>-1}} \right. " alt=" \left \{ {{3x>1} \atop {x>-1}} \right. " align="absmiddle" class="latex-formula">
\frac{1}{3}} \atop {x>-1}} \right. " alt=" \left \{ {{x>\frac{1}{3}} \atop {x>-1}} \right. " align="absmiddle" class="latex-formula">
∈
∞ 

![log_2[(3x-1)*(x+1)]=log_22^5 log_2[(3x-1)*(x+1)]=log_22^5](https://tex.z-dn.net/?f=++log_2%5B%283x-1%29%2A%28x%2B1%29%5D%3Dlog_22%5E5+)






∉ ОДЗ
Ответ: 