Какие множества называют равномощными? Докажите, что следующие множества равномощны:...

0 голосов
188 просмотров

Какие множества называют равномощными? Докажите,
что следующие множества равномощны:
1)[3;8]и [0;4]
2)[0;4]и [0;4)


Алгебра (32 баллов) | 188 просмотров
Дан 1 ответ
0 голосов

Равномощными называют множества, у которых равное количество элементов.
Если количество элементов бесконечное, то различают разные уровни бесконечности.
На нижнем (нулевом) уровне стоят счетные множества. Математики говорят, что у них кардинальное число равно алеф-нуль.
Это, например, множества целых, натуральных или рациональных чисел.
Георг Кантор доказал, что все эти три множества - счетные, и имеют мощность алеф-нуль.
Выше, на первом уровне, стоят множества действительных чисел, комплексных чисел, а также множества точек на отрезке, на прямой, на плоскости или в пространстве.
Это Кантор тоже доказал, что каждой точке на прямой можно поставить в соответствие точку на плоскости или в пространстве.
Про эти множества говорят, что они имеют мощность алеф-один, или мощность континуума.
Так вот, мощность множества точек на отрезке любой длины, [3;8] или [0;4], или на открытом промежутке [0;4), равно мощности прямой, то есть континууму.
Обозначается английской буквой с.

(320k баллов)