Помогите решить пожалуйста

0 голосов
21 просмотров

Помогите решить пожалуйста


image

Геометрия (783 баллов) | 21 просмотров
Дан 1 ответ
0 голосов

Так как пирамида правильная, в ее основании лежит квадрат, поэтому все стороны основания равны между собой. Возьмем две стороны:
AB = BC = 12.

Проведем диагональ AC и увидим прямоугольный треугольник.
AB, BC - катеты.
AC - гипотенуза.

AC² = AB² + BC² = 12² + 12² = 144 + 144 = 288.
AC = √288 = 2√72.

AC = DB - диагонали.

При этом в диагонали AC: AO = OC, а в диагонали DB: DO = OB.

Так как AO = OC = DO = OB, диагонали равны и делятся пополам:

AO = OC = DO = OB = \frac{2 \sqrt{72} }{2} = \sqrt{72} .

Возьмем треугольник SOB.
Зная гипотенузу SB и катет OB, найдем высоту SO:

SO² = SB² - OB² = 19² - √72 = 361 - 72 = 289.
SO = √289 = 17.

Ответ: 17.


image
(8.6k баллов)