У причала находилось 6 лодок, часть из которых была двухместнами, а часть трёхместными....

0 голосов
282 просмотров

У причала находилось 6 лодок, часть из которых была двухместнами, а часть трёхместными. Всего в эти лодки может поместиться 14 человек. Сколько двухместынх и сколько трёх местных лодок было у причала


Алгебра (17 баллов) | 282 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Можно решить задачу системой, где х—двухместные лодки, а у—трёхместные
{х+у=6 => у=6-х
{2х+3у=14
2х+3(6-х)=14
2х+18-3х=14
2х-3х=14-18
-х=-4
х=4 — двухместных лодок

4+у=6
у=6-4
у=2 — трёхмёстных лодок

Ответ: 4 двухместных лодок и 2 трёхместных ложки было у причало

(6.3k баллов)
0 голосов

X-количество 2 местных лодок, y- количество 3 местных лодок. составляем систему: { x+y=6, 2*x+3*y=14; x=6-y. подставляем во 2 уравнение: 2*(6-y)+3y=14; 12-2y+3y=14; -2y+3y=14-12; y=2. x=6-2=4. Ответ: 4 двухместные лодки, 2 трёхместные лодки. 

(77.5k баллов)