Если вписать параллепипед в координатную плоскость D(0,0,0) DA || OY, DC || OX, DD1 || OZ
D(0,0,0), A1(0,1,3), M(2,0,5/3)
Плоскость DA1M имеет вид ax+by+cz+d=0 подсталвяя координаты какой точки D,A1,M
{a*0+b*0+c*0+d=0
{a*0+b*1+c*3+d=0
{a*2+b*0+c*(5/3)+d=0
{d=0
{b=-3c
{a=-5c/6
Откуда вектор нормали имеет координатов n(5/6,3,-1)
Тогда по формуле расстояние от точки D1(0,0,3) равно
l=|(5/6*0+3*0-3)|/sqrt((5/6)^2+3^2+(-1)^2)=18/sqrt(385)