1. Дано: AB=BC, BK ⊥ AC
Довести: ΔABK = ΔCBK
Доведение
AB=BC, BK - общая сторона, ∠ABK = ∠CBK = 90° (за условием BK ⊥ AC).
Следовательно, ΔABK = ΔCBK за I признаком.
2. Дано: MK = КN, ∠M = ∠N, PL ⊥ MN
Довести: ΔMKP = ΔNKL
Доведение
За условием MK = KN, ∠M = ∠N.
Так как PL ⊥ MN, то ∠PKM = ∠LKM = 90°.
Следовательно, ΔMKP = ΔNKL за II признаком.
3. Дано: KB = KC, ∠ABK = ∠DCK
Довести: ΔABK = ΔDCK
Доведение
За условием KB = KC, ∠ABK = ∠DCK.
∠AKB = ∠DKC как вертикальные.
Следовательно, ΔABK = ΔDCK за II признаком.