( \frac{ (s-2)^{2} }{(2s-1)(2s+1)} * \frac{s(2s+1)}{(s+2)( s^{2}-2s+4) }- \frac{s+2}{s(2s-1)}) : \frac{4}{s(s+2)} -\frac{10s+1}{4(1-2s)}=( \frac{ (s-2)^{2} }{(2s-1)(2s+1)} * \frac{s(2s+1)}{(s+2) (s-2)^{2} }- \frac{s+2}{s(2s-1)}) : \frac{4}{s(s+2)} -\frac{10s+1}{4(1-2s)}=( \frac{(s-2)^{2}*s(2s+1)}{(2s-1)(2s+1)*(s+2) (s-2)^{2}} - \frac{s+2}{s(2s-1)} ): \frac{4}{s(s+2)} - \frac{10s+1}{4(1-2s)} =( \frac{s}{(2s-1)(s+2)} - \frac{s+2}{s(2s-1)} ): \frac{4}{s(s+2)} - \frac{10s+1}{4(1-2s)}=\frac{ s^{2}- (s+2)^{2} }{s(2s-1)(s+2)}: \frac{4}{s(s+2)} - \frac{10s+1}{4(1-2s)}=\frac{(s^{2}- (s+2)^{2})s(s+2)}{4(s(2s-1)(s+2))} - \frac{10s+1}{4(1-2s)}=\frac{(s^{2}- s^{2}-4s-4)}{4(2s-1)} - \frac{10s+1}{4(1-2s)}= \frac{(-4s-4)}{4(2s-1)}- \frac{10s+1}{4(1-2s)}= \frac{-4(s+1)}{4(2s-1)} + \frac{10s+1}{4(2s-1)}=\frac{-4s-4+10s+1}{4(2s-1)} =\frac{6s-3}{4(2s-1)}=\frac{3(2s-1)}{4(2s-1)}= \frac{3}{4} =0,75
Надеюсь помогла)Успехов))