Находим первую производную функции:
y' = 4x³-4x
Приравниваем ее к нулю:
4x³-4x = 0
4x(x-1)(x+1)=0
x1
= -1
x2
= 0
x3
= 1
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 12x2-4
Вычисляем:
y''(-1) = 8>0 - значит точка x = -1 точка минимума функции.
y''(0) = -4<0 - значит точка x = 0 точка максимума функции.<br>
y''(1) = 8>0 - значит точка x = 1 точка минимума функции.