1) mn²/n² - m²·(2/m-2/n) = mn²/n² - (m² · 2)/m + (2 · m²)/n = mmn²/mn² - 2m²n²/
/mn² + 2nmm²/mn² = (mmn² - 2m²n² + 2nmm²)/mn² = (m²n² - 2m²n² + 2m³n)/mn²
= (2m³n - m²n)/mn² = mn(2m² - m)/mn² = (2m² - m)/n
2) (u/u - v - u/u + v) · u² + uv/2v = uu²/u - vu²/1 - uu²/u + vu²/1 + uv/2v = uu²2v/u2v- - u2vvu²/u2v - uu²2v/u2v + vu²u2v/u2v + uuv/u2v = (uu²2v - u2vvu² - uu²2v +
+ vu²u2v + uuv)/2uv = (2u³v - 2u³v² - 2u³v + 2u³v² + u²v)/2uv = u²v/2uv = u/2
3) (a + b)² ÷ (1/a² + 1/b² + 2/ab) = (a + b)(a + b)/1 ÷ (b²/a²b² + a²/a²b² + 2ab/a²b²) =
= (a + b)(a + b)/1 ÷ (a² + 2ab + b²)/a²d² = (a + b)(a + b)/1 ÷ (a + b)(a + b)/a²d² = (a + b)(a + b)/1 · a²d²/(a + b)(a + b) = (a + b)(a + b)a²d²/(a + b)(a + b) = a²d²