Методом от противного доказать. Через точку М, не лежащую на прямой а, проведены две прямые, не имеющие общих точек с прямой а. Докажите, что по крайней мере одна из этих прямых и прямая а являются скрещивающимися прямыми.
Так как прямые не имеют общих точек с а, то они либо параллельны ей, либо скрещиваются с ней. Но обе они параллельны а быть не могут, так как имеют общую точку. Значит, по крайней мере одна из них скрещивается с а.
Мне нужно методом от противного