Разложите ** множители многочлен 3x^3 + x^2 - 3х - 1

0 голосов
31 просмотров

Разложите на множители многочлен
3x^3 + x^2 - 3х - 1


Алгебра (63 баллов) | 31 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Подбираем 1 корень:
x=1
тогда этот многочлен можно представить как:
(x-1)(3x^2+ax+b)=3x^3+ax^2+bx-3x^2-ax-b=3x^3+x^2(a-3)+x(b-a)-b
известно, что:
3x^3+x^2-3x-1=3x^3+x^2(a-3)+x(b-a)-b
тогда составляем систему:
a-3=1
b-a=-3
b=1
решаем:
b=1
a=1+3=4
тогда:
3x^3+x^2-3x-1=(x-1)(3x^2+4x+1)
раскладываем на множители 3x^2+4x+1
3x^2+4x+1=0
D=16-12=4
x1=(-4+2)/6=-1/3
x2=-1
3x^2+4x+1=3(x+1)(x+1/3)=(x+1)(3x+1)
в итоге исходный многочлен разложится на множители:
3x^3+x^2-3x-1=(x-1)(x+1)(3x+1)

(149k баллов)
0 голосов

3x^3 +x^2 -3x -1 = (x - 1)(x + 1)(3x + 1)

(1.4k баллов)