Лодка прошла 5 км по течению реки и 3 км против течения реки,затратив ** весь путь 40...

0 голосов
53 просмотров

Лодка прошла 5 км по течению реки и 3 км против течения реки,затратив на весь путь 40 мин(перевести в часы).Скорость течения составляет 3 км/ч.
Найти скорость лодки по течению(скорость через х)


Алгебра (15 баллов) | 53 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть собственная скорость будет х км/ч, тогда скорость по течению равна (x+3) км/ч, а против течения - (x-3) км/ч. Время по течению - 5/(x+3) ч, а против течения - 3/(х-3) км/ч. На весь путь лодка затратила 40 мин = 40/60 = 2/3.
 
     Составим уравнение.

\displaystyle \frac{5}{x+3}+ \frac{3}{x-3}= \frac{2}{3} \,\, |\cdot 3(x^2-9)\ne 0\\ \\ 15(x-3)+9(x+3)=2(x^2-9)\\ \\ 15x-45+9x+27=2x^2-18\\ \\ x^2-12x=0\\ \\ x(x-12)=0

Произведение множителей равно нулю, если хотя бы один из множителей равен нулю.

x_1=0 что противоречит условию

x=12 км/ч - собственная скорость.

Тогда скорость лодки по течению равна x+3 = 12+3 = 15 км/ч.

Ответ: 15 км/ч.