2sin²x + 6 - 13sin2x = 0
Воспользуемся основным тригонометрическим тождеством (sin²x + cos²x = 1)
2sin²x + 6sin²x + 6cos²x - 13sin2x = 0
Разложим синус удвоенного аргумента:
8sin²x - 26sinxcosx + 6cos²x = 0 |:2
4sin²x - 13sinxcosx + 3cos²x = 0 |:cos²x
4tg²x - 13tgx + 3 = 0
4tg²x - 12tgx - tgx + 3 = 0
4tgx(tgx - 3) - (tgx - 3) = 0
(4tgx - 1)(tgx - 3) = 0
4tgx = 1 или tgx = 3
tgx = 1/4 или tgx = 3
x = arctg(1/4) + πn, n ∈ Z или x = arctg3 + πk, k ∈ Z
Ответ: arctg(1/4) + πn, n ∈ Z; arctg3 + πk, k ∈ Z .