Задача №1
Так как парт 16, то учеников может быть максимум 32, но на экскурсии было 23, тогда меньше 23 не может быть. Получается, что учеников в классе от 23 до 32.
Каждый мальчик дружит с четырьмя девочками, а каждая девочка с тремя мальчиками, то есть, число мальчиков относится к числу девочек как 3:4.
Мальчиков 3k, девочек 4k. Всего 3k+4k=7k. Получается, что число учеников делится на 7.
Это число 28, ведь другого числа между 23 и 32, которое делится на 7, нет.
Тогда учеников 28.
k=28:7=4
Мальчиков 3k=3·4=12
Девочек 4k=4·4=16
Задача № 2
Доска 8х8, всего клеток 64. Одну отрезали, осталось 63. Но
ещё известно, что отрезали прямоугольники 1х4. Один такой прямоугольник, два или
больше. Представим, что один. Это ещё минус 4 клетки. 63-4=59. Но 59 оставшихся
клеток не делится на 3. 59 клеток нельзя разбить на уголки из трёх клеток.
Тогда отрезали не один, а, может быть, два прямоугольника.
Это 8 клеток.
63-8=55.
55 клеток не делится на 3. Значит, отрезали не два
прямоугольника.
Проверим три. Если отрезали три прямоугольника по четыре
клетки, то это 12 клеток.
63-12=51.
51 делится на 3. 51:3=17.
Наибольшее количество уголков 17. Такой вариант возможен.
Можно начертить. Прилагаю на фотографии вариант разбиения.