Task/24964805
--------------------
решить неравенство lg⁴x-4lg³x+5lg²x -2lgx ≥ 0
--------------
замена t =lgx , где x ∈ (0 ; ∞) →из ООФ lgx.
t⁴ - 4t³+5t² -2t ≥ 0 ⇔t(t³ -4t² +5t -2) ≥ 0 ;
t⁴ - 4t³+4t² +t² -2t ≥ 0 ⇔(t² -2t)² +(t² -2t) ≥ 0 ⇔(t² -2t)(t² -2t+1) ≥ 0
t(t -1)²(t -2) ≥ 0
+ - - +
//////////// [0] ---------[1]-----------[2] ////////////////
t ∈( -∞ ; 0] U {1} U [2 ; ∞)
[ lgx ≤ 0 ; lgx =1 ; lgx ≥ 2 .⇔ x∈(0 ; 1] ∪ {10} ∪ [100 ; ∞) .
ответ: x∈(0 ; 1] ∪ {10} ∪ [100 ; ∞) .
* * * или t⁴ - 4t³+5t² -2t = t(t³ -4t² +5t -2) =t(t-1)²(t-2) * * *
|| числа 1 и 2_делители свободного члена корни многочлена
t³ -4t² +5t -2 , притом 1 двукратный ||