ABCDравнобедренная трапеция AB=CD AD=16 AB=10 угол A=60 найти BC

0 голосов
94 просмотров

ABCDравнобедренная трапеция AB=CD AD=16 AB=10 угол A=60 найти BC


Геометрия (43 баллов) | 94 просмотров
Дан 1 ответ
0 голосов

Для решения этой задачи нужно провести в трапеции две высоты из ее вершин В и С на основание АД. Назовем их ВН и СЕ. Они равны и отсекают на основании АД равные отрезе АН и ЕД так, что основание отрезок  НЕ получается равным ВС. Значит, найдя НЕ - найдем и искомое ВС. Так как высоты трапеции мы проводим под прямым углом к основанию АД, то получим прямоугольные равные треугольники АВН и СЕД. Рассмотрим прямоугольный треугольник АВН. В нем угол В равен 60 градусов по условию. Значит, угол АВН равен 90-60=30 градусов. По свойству прямоугольного треугольника, против угла в 30 градусов лежит сторона равная полвине гипотенузы. Тогда АН=АВ:2=10:2=5 см
Но АН=ЕД=5 см, отсюда НЕ=АД-(АН+ЕД)=16-(5+5)=6 см
Ответ: ВС=6 см

(42.2k баллов)